Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.962
Filtrar
1.
Eur J Med Chem ; 270: 116392, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608408

RESUMO

The emergence of serious bacterial resistance towards clinical oxacins poses a considerable threat to global public health, necessitating the development of novel structural antibacterial agents. Seven types of novel indolylacryloyl-derived oxacins (IDOs) were designed and synthesized for the first time from commercial 3,4-difluoroaniline via an eight-step procedure. The synthesized compounds were characterized by modern spectroscopic techniques. All target molecules were evaluated for antimicrobial activities. Most of the prepared IDOs showed a broad antibacterial spectrum and strong activities against the tested strains, especially ethoxycarbonyl IDO 10d (0.25-0.5 µg/mL) and hydroxyethyl IDO 10e (0.25-1 µg/mL) exhibited much superior antibacterial efficacies to reference drug norfloxacin. These highly active IDOs also displayed low hemolysis, cytotoxicity and resistance, as well as rapid bactericidal capacity. Further investigations indicated that ethoxycarbonyl IDO 10d and hydroxyethyl IDO 10e could effectively reduce the exopolysaccharide content and eradicate the formed biofilm, which might delay the development of drug resistance. Preliminary exploration of the antibacterial mechanism revealed that active IDOs could not only destroy membrane integrity, resulting in changes in membrane permeability, but also promote the accumulation of reactive oxygen species, leading to the production of malondialdehyde and decreased bacterial metabolism. Moreover, they exhibited the capability to bind with DNA and DNA gyrase, forming supramolecular complexes through various noncovalent interactions, thereby inhibiting DNA replication and causing bacterial death. All the above results suggested that the newly developed indolylacryloyl-derived oxacins should hold great promise as potential multitargeting broad-spectrum antibacterial candidates to overcome drug resistance.


Assuntos
Antibacterianos , Norfloxacino , Antibacterianos/farmacologia , Antibacterianos/química , Norfloxacino/farmacologia , Bactérias , Permeabilidade da Membrana Celular , DNA/farmacologia , Testes de Sensibilidade Microbiana
2.
J Hazard Mater ; 470: 133740, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569335

RESUMO

The fate of fluoroquinolone antibiotics norfloxacin and ofloxacin were investigated in mesocosmic wetlands, along with their effects on nutrients removal, antibiotic resistance genes (ARGs) and epiphytic microbial communities on Hydrilla verticillate using bionic plants as control groups. Approximately 99% of norfloxacin and ofloxacin were removed from overlaying water, and H. verticillate inhibited fluoroquinolones accumulation in surface sediments compared to bionic plants. Partial least squares path modeling showed that antibiotics significantly inhibited the nutrient removal capacity (0.55) but had no direct effect on plant physiology. Ofloxacin impaired wetland performance more strongly than norfloxacin and more impacted the primary microbial phyla, whereas substrates played the most decisive role on microbial diversities. High antibiotics concentration shifted the most dominant phyla from Proteobacteria to Bacteroidetes and inhibited the Xenobiotics biodegradation function, contributing to the aggravation in wetland performance. Dechloromonas and Pseudomonas were regarded as the key microorganisms for antibiotics degradation. Co-occurrence network analysis excavated that microorganisms degrade antibiotics mainly through co-metabolism, and more complexity and facilitation/reciprocity between microbes attached to submerged plants compared to bionic plants. Furthermore, environmental factors influenced ARGs mainly by altering the community dynamics of differential bacteria. This study offers new insights into antibiotic removal and regulation of ARGs accumulation in wetlands with submerged macrophyte.


Assuntos
Antibacterianos , Biodegradação Ambiental , Microbiota , Norfloxacino , Poluentes Químicos da Água , Áreas Alagadas , Antibacterianos/farmacologia , Poluentes Químicos da Água/metabolismo , Norfloxacino/farmacologia , Microbiota/efeitos dos fármacos , Hydrocharitaceae/metabolismo , Hydrocharitaceae/genética , Resistência Microbiana a Medicamentos/genética , Ofloxacino , Bactérias/genética , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Genes Bacterianos , Fluoroquinolonas/metabolismo
3.
PLoS One ; 19(3): e0299709, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38551994

RESUMO

Marbofloxacin (MBF) was once widely used as a veterinary drug to control diseases in animals. MBF residues in animal food endanger human health. In the present study, an immunochromatographic strip assay (ICSA) utilizing a competitive principle was developed to rapidly detect MBF in beef samples. The 50% inhibitory concentration (IC50) and the limit of detection (LOD) of the ICSAs were 2.5 ng/mL and 0.5 ng/mL, respectively. The cross-reactivity (CR) of the MBF ICSAs to Ofloxacin (OFL), enrofloxacin (ENR), norfloxacin (NOR), and Ciprofloxacin (CIP) were 60.98%, 32.05%, 22.94%, and 23.58%, respectively. The CR for difloxacin (DIF) and sarafloxacin (SAR) was less than 0.1%. The recovery rates of MBF in spiked beef samples ranged from 82.0% to 90.4%. The intra-assay and interassay coefficients of variation (CVs) were below 10%. In addition, when the same authentic beef samples were detected in a side-by-side comparison between the ICSAs and HPLC‒MS, no statistically significant difference was observed. Therefore, the proposed ICSAs can be a useful tool for monitoring MBF residues in beef samples in a qualitative and quantitative manner.


Assuntos
Resíduos de Drogas , Fluoroquinolonas , Animais , Bovinos , Humanos , Fluoroquinolonas/análise , Enrofloxacina , Norfloxacino , Ofloxacino , Resíduos de Drogas/análise
4.
ACS Appl Mater Interfaces ; 16(12): 14595-14604, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38469717

RESUMO

Herein, we report the preparation of bifunctional silica nanoparticles by covalent attachment of both an anti-inflammatory drug (ibuprofen) and an antibiotic (levofloxacin or norfloxacin) through amide groups. We also describe the coating of cotton fabrics with silica nanoparticles containing both ibuprofen and norfloxacin moieties linked by amide groups by using a one-step coating procedure under ultrasonic conditions. The functionalized nanoparticles and cotton fabrics have been characterized using spectroscopic and microscopic techniques. The functionalized nanoparticles and textiles have been treated with model proteases for the in situ release of the drugs by the amide bond enzymatic cleavage. Topical dermal applications in medical bandages are expected, which favor wound healing.


Assuntos
Nanopartículas , Norfloxacino , Dióxido de Silício/química , Ibuprofeno/farmacologia , Fibra de Algodão , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Têxteis , Cicatrização , Anti-Inflamatórios/química , Amidas
5.
Talanta ; 273: 125935, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38503123

RESUMO

Target specificity, one of aptamer characteristics that determine recognition efficiency of biosensors, is generally considered to be an intrinsic property of aptamer. However, a high-affinity aptamer may have additional target binding specificity, little is known about the specificity of aptamer binding to multiple targets, which may result in false-positive results that hinder the accuracy of detection. Herein, an aptamer OBA3 with dual target ochratoxin A (OTA) and norfloxacin (NOR) was used as an example to explore the binding specificity mechanism and developed rapid fluorescent aptasensing methods. The nucleotide 15th T of aptamer OBA3 was demonstrated to be critical for specificity and affinity binding of target OTA via site-saturation mutagenesis. Substituting the 15th T base for C base could directly improve recognition specificity of aptamer for NOR and remove the binding affinity for OTA. The combination of π-π stacking interactions, salt bridges and hydrogen bonds between loop pocket of aptamer and quinolone skeleton, piperazinyl group may contributes to the fluoroquinolone antibiotics (NOR and difloxacin)-aptamer recognition interaction. Based on this understanding, a dual-aptamer fluorescent biosensor was fabricated for simultaneous detection of OTA and NOR, which has a linear detection range of 50-6000 nM with a detection limit of 31 nM for OTA and NOR. Combined with T15C biosensor for eliminating interference of OTA, the assay was applied to milk samples with satisfactory recovery (94.06-100.93%), which can achieve detection of OTA and NOR individually within 40 min.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Ocratoxinas , Animais , Norfloxacino , Leite/química , Limite de Detecção , Aptâmeros de Nucleotídeos/química , Ocratoxinas/análise , Corantes , Técnicas Biossensoriais/métodos
6.
Inorg Chem ; 63(14): 6514-6525, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38547361

RESUMO

The solar light-responsive Fe-doped Co-based coordination polymer (Fe@Co-CP) photocatalyst was synthesized under mild conditions. [Co(4-padpe)(1,3-BDC)]n (Co-CP) was first constructed using mixed ligands through the hydrothermal method. Then, Fe was introduced into the Co-CP framework to achieve the enhanced photocatalytic activity. The optimal Fe@Co-CP-2 exhibited excellent catalytic degradation performance for norfloxacin and ciprofloxacin under sunlight irradiation without auxiliary oxidants, and the degradation rates were 91.25 and 92.66% in 120 min. These excellent photocatalytic properties were ascribed to the generation of the Fe-O bond, which not only enhanced the light absorption intensity but also accelerated the separation efficiency of electrons and holes, and hence significantly improved the photocatalytic property of the composites. Meanwhile, Fe@Co-CP-2 displayed excellent stability and reusability. In addition, the degradation pathways and intermediates of antibiotic molecules were effectively analyzed. The free radical scavenging experiment and ESR results confirmed that •OH, •O2-, and h+ active species were involved in the catalytic degradation reaction; the corresponding mechanisms were deeply investigated. This study provides a fresh approach for constructing Fe-doped Co-CP-based composite materials as photocatalysts for degradation of antibiotic contaminants.


Assuntos
Ciprofloxacina , Norfloxacino , Norfloxacino/química , Norfloxacino/efeitos da radiação , Antibacterianos/química , Luz , Catálise
7.
Environ Pollut ; 347: 123668, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38442820

RESUMO

The Baddi-Barotiwala-Nalagarh (BBN) region of Indian Himalayas is one of the most important pharmaceutical industrial clusters in Asia. This study investigated the distribution, and ecological and human health risks of four most frequently used pharmaceuticals [ciprofloxacin (CIP), norfloxacin (NOR), cetirizine (CTZ) and citalopram oxalate (ECP)] when co-occurring with metal ions in the Sirsa river water of the BBN region. The concentration range of the selected pharmaceuticals was between 'not detected' to 50 µgL-1 with some exception for CIP (50-100 µgL-1) and CTZ (100-150 µgL-1) in locations directly receiving wastewater discharges. A significant correlation was found between the occurrences of NOR and Al (r2 = 0.65; p = 0.01), and CTZ and K (r2 = 0.50; p = 0.01) and Mg (r2 = 0.50; p = 0.01). A high-level ecological risk [risk quotient (RQ) > 1] was observed for algae from all the pharmaceuticals. A medium-level risk (RQ = 0.01-0.1) was observed for Daphnia from CIP, NOR and ECP, and a high-level risk from CTZ. A low-level risk was observed for fishes from CIP and NOR, whereas CTZ and ECP posed a high-level risk to fishes. The overall risk to ecological receptors was in the order: CTZ > CIP > ECP > NOR. Samples from the river locations receiving water from municipal drains or situated near landfill and pharmaceutical factories exhibited RQ > 1 for all pharmaceuticals. The average hazard quotient (HQ) values for the compounds followed the order: CTZ (0.18) > ECP (0.15) > NOR (0.001) > CIP (0.0003) for children (0-6 years); ECP (0.49) > CTZ (0.29) > NOR (0.005) > CIP (0.001) for children (7-17 years), and ECP (0.34) > CTZ (0.21) > NOR (0.007) > CIP (0.001) for adults (>17 years). The calculated risk values did not readily confirm the status of water as safe or unsafe because the values of predicted no-effect concentration (PNEC) would depend on various other environmental factors such as quality of the toxicity data, and species sensitivity and distribution, which warrants further research.


Assuntos
Rios , Poluentes Químicos da Água , Animais , Adulto , Criança , Humanos , 60479 , Monitoramento Ambiental , Ciprofloxacina/toxicidade , Norfloxacino , Cetirizina , Medição de Risco , Água , Preparações Farmacêuticas , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
8.
Sci Total Environ ; 922: 171328, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38428600

RESUMO

The co-contamination of antibiotics and nitrogen has attracted widespread concerns due to its potential harm to ecological safety and human health. Sulfur-driven autotrophic denitrification (SAD) with low sludge production rate was adopted to treat antibiotics laden-organic deficient wastewater. Herein, a lab-scale sequencing batch reactor (SBR) was established to explore the simultaneous removal of nitrate and antibiotics, i.e. Norfloxacin (NOR), as well as microbial response mechanism of SAD sludge system towards NOR exposure. About 80.78 % of NOR was removed by SAD sludge when the influent NOR level was 0.5 mg/L, in which biodegradation was dominant removal route. The nitrate removal efficiency decreased slightly from 98.37 ± 0.58 % to 96.58 ± 1.03 % in the presence of NOR. Thiobacillus and Sulfurimonas were the most abundant sulfur-oxidizing bacteria (SOB) in SAD system, but Thiobacillus was more sensitive to NOR. The up-regulated genes related to Xenobiotics biodegradation and metabolism and CYP450 indicated the occurrence of NOR biotransformation in SAD system. The resistance of SAD sludge to the exposure of NOR was mainly ascribed to antibiotic efflux. And the effect of antibiotic inactivation was enhanced after long-term fed with NOR. The NOR exposure resulted in the increased level of antibiotics resistance genes (ARGs) and mobile genetic elements (MGEs). Besides, the enhanced ARG-MGE co-existence patterns further reveals the higher horizontal mobility potential of ARGs under NOR exposure pressures. The most enriched sulfur oxidizing bacterium Thiobacillus was a potential host for most of ARGs. This study provides a new insight for the treatment of NOR-laden wastewater with low C/N ratio based on the sulfur-mediated biological process.


Assuntos
Antibacterianos , Águas Residuárias , Humanos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Esgotos/microbiologia , Norfloxacino , Nitratos/metabolismo , Desnitrificação , Bactérias/genética , Bactérias/metabolismo , Enxofre/metabolismo , Reatores Biológicos/microbiologia , Nitrogênio/metabolismo
9.
Bioorg Med Chem Lett ; 103: 129709, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494040

RESUMO

A class of unique hydrazyl hydroxycoumarins (HHs) as novel structural scaffold was developed to combat dreadful bacterial infections. Some HHs could effectively suppress bacterial growth at low concentrations, especially, pyridyl HH 7 exhibited a good inhibition against Pseudomonas aeruginosa 27853 with a low MIC value of 0.5 µg/mL, which was 8-fold more active than norfloxacin. Furthermore, pyridyl HH 7 with low hemolytic activity and low cytotoxicity towards NCM460 cells showed much lower trend to induce the drug-resistant development than norfloxacin. Preliminarily mechanism exploration indicated that pyridyl HH 7 could eradicate the integrity of bacterial membrane, result in the leakage of intracellular proteins, and interact with bacterial DNA gyrase via non-covalent binding, and ADME analysis manifested that compound 7 gave good pharmacokinetic properties. These results suggested that the newly developed hydrazyl hydroxycoumarins as potential multitargeting antibacterial agents should be worthy of further investigation for combating bacterial infection.


Assuntos
Norfloxacino , Pseudomonas aeruginosa , Norfloxacino/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , DNA Girase , Testes de Sensibilidade Microbiana
10.
Chemosphere ; 355: 141788, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548088

RESUMO

N/S co-doping has emerged as a prevailing strategy for carbon-based adsorbents to facilitate the antibiotic removal efficiency. Nevertheless, the underlying interplay among N, S, and their adjacent vacancy defects remains overlooked. Herein, we present a novel in situ strategy for fabricating pyridinic-N dominated and S dual-doped porous carbon adsorbent with rich vacancy defects (VNSC). The experimental results revealed that N (acting as the electron donor) and S (acting as the electron acceptor) form an internal electric field (IEF), with a stronger IEF generated between pyridinic-N and S, while their adjacent vacancy defects activate carbon π electrons, thus enhancing the charge transfer of the IEF. Density functional theory (DFT) calculations further demonstrated that the rich charge transfer in the IEF facilitated the π-π electron donor-acceptor (EDA) interaction between VNSC and tetracycline (TC) as well as norfloxacin (NOR), and thus is the key to adsorption performance of VNSC. Consequently, VNSC exhibited high adsorption capacities toward TC (573.1 mg g-1) and NOR (517.0 mg g-1), and its potential for environmental applications was demonstrated by interference, environmentally relevant concentrations, fixed-bed column, and regeneration tests. This work discloses the natures of adsorption capacity for N/S dual-doped carbon-based materials for antibiotics.


Assuntos
Antibacterianos , Norfloxacino , Porosidade , Tetraciclina , Adsorção , Carbono , Oxidantes
11.
Biosens Bioelectron ; 251: 116119, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38342057

RESUMO

Poly (3,4-ethylenedioxythiophene) (PEDOT)-based molecularly imprinted electrochemical sensors have attracted widespread attention for monitoring contaminants in food and the environment. However, there are still problems such as poor hydrophilicity, easy agglomeration, and low selectivity in its preparation. In this work, a novel molecularly imprinted composite hollow sphere was prepared by a molecular imprinting technique using nitrogen-doped hollow carbon spheres as matrix material, and PEDOT and poly(methacrylic acid) as monomers. The selective binding capabilities and mechanism of the material to norfloxacin (NOR) were systematically investigated. Then the material-based sensor was constructed, and its electrochemical detection performance toward NOR was thoroughly studied. The sensor exhibited a wide linear range (0.0005-31 µM), a low detection limit (0.061 nM), satisfactory immunity to interference and stability. Besides, the sensor displayed better sensitivity and reliability (spiked recoveries of 98.0-105.2%, relative standard deviation of 3.45-5.69%) for detecting NOR in lake water, honey, and milk than high-performance liquid chromatography. This work provides a new strategy for developing poly(3,4-ethylenedioxythiophene)-based molecularly imprinted electrochemical sensors.


Assuntos
Técnicas Biossensoriais , Impressão Molecular , Norfloxacino , Reprodutibilidade dos Testes , Técnicas Eletroquímicas/métodos , Polímeros/química , Técnicas Biossensoriais/métodos , Impressão Molecular/métodos , Limite de Detecção , Eletrodos
12.
Microbiology (Reading) ; 170(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38373028

RESUMO

Metal homeostasis is maintained by the uptake, storage and efflux of metal ions that are necessary for the survival of the bacterium. Homeostasis is mostly regulated by a group of transporters categorized as ABC transporters and P-type ATPases. On the other hand, efflux pumps often play a role in drug-metal cross-resistance. Here, with the help of antibiotic sensitivity, antibiotic/dye accumulation and semi-quantitative biofilm formation assessments we report the ability of Rv3270, a P-type ATPase known for its role in combating Mn2+ and Zn2+ metal ion toxicity in Mycobacterium tuberculosis, in influencing the extrusion of multiple structurally unrelated drugs and enhancing the biofilm formation of Escherichia coli and Mycobacterium smegmatis. Overexpression of Rv3270 increased the tolerance of host cells to norfloxacin, ofloxacin, sparfloxacin, ampicillin, oxacillin, amikacin and isoniazid. A significantly lower accumulation of norfloxacin, ethidium bromide, bocillin FL and levofloxacin in cells harbouring Rv3270 as compared to host cells indicated its role in enhancing efflux activity. Although over-expression of Rv3270 did not alter the susceptibility levels of levofloxacin, rifampicin and apramycin, the presence of a sub-inhibitory concentration of Zn2+ resulted in low-level tolerance towards these drugs. Of note, the expression of Rv3270 enhanced the biofilm-forming ability of the host cells strengthening its role in antimicrobial resistance. Therefore, the study indicated that the over-expression of Rv3270 enhances the drug efflux activity of the micro-organism where zinc might facilitate drug-metal cross-resistance for some antibiotics.


Assuntos
Proteínas de Transporte , Mycobacterium tuberculosis , ATPases do Tipo-P , Mycobacterium tuberculosis/genética , Levofloxacino , Norfloxacino , Antibacterianos/farmacologia , Oxacilina
13.
Eur J Med Chem ; 268: 116219, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368710

RESUMO

The emergence of drug-resistant microorganisms threatens human health, and it is usually exacerbated by the formation of biofilm, which forces the development of new antibacterial agents with antibiofilm activity. In this work, a novel category of aminothiazoximone-corbelled ethoxycarbonylpyrimidones (ACEs) was designed and synthesized, and some of the prepared ACEs showed potent bioactivity against the tested bacteria. In particular, imidazolyl ACE 6c showed better inhibitory activity towards Acinetobacter baumannii and Escherichia coli with MIC values both of 0.0066 mmol/L than norfloxacin. It was also revealed that imidazolyl ACE 6c not only possessed inconspicuous hemolytic rate and cytotoxicity, low drug resistance and no risk of penetrating the blood-brain barrier, but also exhibited obvious biofilm inhibition and eradication activities. The preliminary mechanism research suggested that imidazolyl ACE 6c could induce metabolic dysfunction by deactivating lactate dehydrogenase and promote the accumulation of reactive oxygen species to decrease the reduced glutathione and ultimately cause oxidative damage in bacteria. Furthermore, ACE 6c was also found that could insert into DNA to form the supramolecular complex of 6c-DNA and trigger cell death. The multidimensional effect might promote bacterial cell rupture, leading to the leakage of intracellular content. These findings manifested that novel imidazolyl ACE 6c as a potential multitargeting antibacterial agent with potent antibiofilm activity could provide new possibility for the treatment of refractory biofilm-intensified bacterial infections.


Assuntos
Antibacterianos , Norfloxacino , Humanos , Antibacterianos/farmacologia , Norfloxacino/farmacologia , Bactérias Gram-Negativas , Bactérias , Biofilmes , DNA/farmacologia , Testes de Sensibilidade Microbiana
14.
J Hazard Mater ; 468: 133787, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364579

RESUMO

Bioadsorption, bioaccumulation and biodegradation processes in algae, play an important role in the biomagnification of antibiotics, or other organic pollutants, in aquatic food chains. In this study, the bioadsorption, bioaccumulation and biodegradation of norfloxacin [NFX], sulfamethazine [SMZ] and roxithromycin [RTM]) is investigated using a series of culture experiments. Chlorella vulgaris was exposed to these antibiotics with incubation periods of 24, 72, 120 and 168 h. Results show the bioadsorption concentration of antibiotics in extracellular matter increases with increasing alkaline phosphatase activity (AKP/ALP). The bioaccumulation concentrations of NFX, SMZ and RTM within cells significantly increase after early exposure, and subsequently decrease. There is a significant positive antibiotics correlation to superoxide dismutase (SOD), the photosynthetic electron transport rate (ETR) and maximum fluorescence after dark adaptation (Fv/Fm), while showing a negative correlation to malondialdehyde (MDA). The biodegradation percentages (Pb) of NFX, SMZ and RTM range from 39.3 - 97.2, 41.3 - 90.5, and 9.3 - 99.9, respectively, and significantly increase with increasing Fv/Fm, density and chlorophyll-a. The accumulation of antibiotics in extracellular and intracellular substances of C. vulgaris is affected by antibiotic biodegradation processes associated with cell physiological state. The results succinctly explain relationships between algal growth during antibiotics exposure and the bioadsorption and bioaccumulation of these antibiotics in cell walls and cell matter. The findings draw an insightful understanding of the accumulation of antibiotics in algae and provide a scientific basis for the better utilization of algae treatment technology in antibiotic contaminated wastewaters. Under low dose exposures, the biomagnification of antibiotics in algae is affected by bioadsorption, bioaccumulation and biodegradation.


Assuntos
Chlorella vulgaris , Roxitromicina , Poluentes Químicos da Água , Antibacterianos/metabolismo , Chlorella vulgaris/metabolismo , Bioacumulação , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Norfloxacino , Roxitromicina/metabolismo
15.
J Hazard Mater ; 468: 133801, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38377908

RESUMO

Pollution with anthropogenic contaminants including antibiotics and nanoplastics leads to gradual deterioration of the marine environment, which threatens endangered species such as the horseshoe crab Tachypleus tridentatus. We assessed the potential toxic mechanisms of an antibiotic (norfloxacin, 0, 0.5, 5 µg/L) and polystyrene nanoparticles (104 particles/L) in T. tridentatus using biomarkers of tissue redox status, molting, and gut microbiota. Exposure to single and combined pollutants led to disturbance of redox balance during short-term (7 days) exposure indicated by elevated level of a lipid peroxidation product, malondialdehyde (MDA). After prolonged (14-21 days) exposure, compensatory upregulation of antioxidants (catalase and glutathione but not superoxide dismutase) was observed, and MDA levels returned to the baseline in most experimental exposures. Transcript levels of molting-related genes (ecdysone receptor, retinoic acid X alpha receptor and calmodulin A) and a molecular chaperone (cognate heat shock protein 70) showed weak evidence of response to polystyrene nanoparticles and norfloxacin. The gut microbiota T. tridentatus was altered by exposures to norfloxacin and polystyrene nanoparticles shown by elevated relative abundance of Bacteroidetes. At the functional level, evidence of suppression by norfloxacin and polystyrene nanoparticles was found in multiple intestinal microbiome pathways related to the genetic information processing, metabolism, organismal systems, and environmental information processing. Future studies are needed to assess the physiological and health consequences of microbiome dysbiosis caused by norfloxacin and polystyrene nanoparticles and assist the environmental risk assessment of these pollutants in the wild populations of the horseshoe crabs.


Assuntos
Poluentes Ambientais , Caranguejos Ferradura , Animais , Caranguejos Ferradura/genética , Norfloxacino/toxicidade , Poliestirenos/toxicidade , Estresse Oxidativo
16.
Adv Colloid Interface Sci ; 324: 103096, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309035

RESUMO

Antibiotics are considered as the new generation water pollutants as these disturb endocrine systems if water contaminated with antibiotics is consumed. Among many antibiotics norfloxacin is present in various natural water bodies globally. This antibiotic is considered an emerging pollutant due to its low degradation in aquatic animals. Besides, it has many side effects on human vital organs. Therefore, the present article discusses the recent advances in the removal of norfloxacin by adsorption. This article describes the presence of norfloxacin in natural water, consumption, toxicity, various adsorbents for norfloxacin removal, optimization factors for norfloxacin removal, kinetics, thermodynamics, modeling, adsorption mechanism and regeneration of the adsorbents. Adsorption takes place in a monolayer following the Langmuir model. The Pseudo-second order model represents the kinetic data. The adsorption capacity ranged from 0.924 to 1282 mg g-1. In this sense, the parameters such as the NFX concentration added to the adsorbent textural properties exerted a great influence. Besides, the fixed bed-based removal at a large scale is also included. In addition to this, the simulation studies were also discussed to describe the adsorption mechanism. Finally, the research challenges and future perspectives have also been highlighted. This article will be highly useful for academicians, researchers, industry persons, and government authorities for designing future advanced experiments.


Assuntos
Recuperação e Remediação Ambiental , Poluentes Químicos da Água , Animais , Humanos , Norfloxacino/análise , Água , Adsorção , Antibacterianos , Cinética , Concentração de Íons de Hidrogênio
17.
Molecules ; 29(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338405

RESUMO

Paper-based test strips with on-site visual detection have become a hot spot in the field of target detection. Yet, low specific surface area and uneven deposition limit the further application of test strips. Herein, a novel "turn-on" ratio of molecularly imprinted membranes (Eu@CDs-MIMs) was successfully prepared based on a Eu complex-doped polyvinylidene fluoride membrane for the selective, rapid and on-site visual detection of norfloxacin (NOR). The formation of surface-imprinted polymer-containing carbon dots (CDs) improves the roughness and hydrophilicity of Eu@CDs-MIMs. Fluorescence lifetimes and UV absorption spectra verified that the fluorescence enhancement of CDs is based on the synergistic effect of charge transfer and hydrogen bonding between CDs and NOR. The fluorescent test strip showed a linear fluorescent response within the concentration range of 5-50 nM with a limit of detection of 1.35 nM and a short response time of 1 min. In comparison with filter paper-based test strips, Eu@CDs-MIMs exhibit a brighter and more uniform fluorescent color change from red to blue that is visible to the naked eye. Additionally, the applied ratio fluorescent test strip was combined with a smartphone to translate RGB values into concentrations for the visual and quantitative detection of NOR and verified the detection results using high-performance liquid chromatography. The portable fluorescent test strip provides a reliable approach for the rapid, visual, and on-site detection of NOR and quinolones.


Assuntos
Norfloxacino , Pontos Quânticos , Smartphone , Pontos Quânticos/química , Corantes Fluorescentes/química , Carbono/química , Limite de Detecção , Espectrometria de Fluorescência/métodos
18.
Am J Trop Med Hyg ; 110(3): 596-608, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38350137

RESUMO

The prevalence of substandard and falsified (SF) antimicrobial drugs is increasing around the globe. This poses a great concern for the healthcare system. The consumption of SF antimicrobial drugs has the potential to result in treatment failure, emergence and development of antimicrobial resistance, and ultimately a rise in mortality rate. The objective of this study was to assess the quality of four commonly used antimicrobials marketed in the cities of Dire Dawa and Jijiga and the town of Togo-Wuchale, which have high potential for illegal drug trade activities in Ethiopia because they are located near the border with Somalia. A total of 54 brands/samples of amoxicillin, amoxicillin/clavulanic acid, ciprofloxacin, and norfloxacin formulations were collected covertly from 43 facilities using a convenience sampling strategy from March 16 to March 29, 2022. The samples were first screened using Global Pharma Health Fund (GPHF)-Minilab protocols and then analyzed using U.S. Pharmacopoeial and British Pharmacopoeia official methods. The quality evaluation detected no falsified product; however, it showed that 14.3% of the samples failed the GPHF-Minilab screening test semiquantitatively. Overall, 22.2% of the products analyzed did not meet any of pharmacopoeial specifications assessed: 13%, 12.2%, and 11.1% of the products failed in assay, dissolution, and weight variation, respectively. Additionally, 56.3% of amoxicillin samples, 60% of amoxicillin/clavulanate, 20% of ciprofloxacin, and 54.5% of norfloxacin samples were found to be pharmaceutically nonequivalent with their respective comparator products regarding dissolution profiles. The study showed the presence of substandard antimicrobial medicines in the eastern Ethiopian market.


Assuntos
Anti-Infecciosos , Medicamentos Falsificados , Medicamentos Essenciais , Medicamentos Fora do Padrão , Humanos , Etiópia , Norfloxacino , Cidades , Amoxicilina , Ciprofloxacina
19.
Chemosphere ; 352: 141481, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395366

RESUMO

The production of cheap, efficient, and stable photocatalysts for degrading antibiotic contaminants remains challenging. Herein, Bi2O3/boron nitride (BN)/Co3O4 ternary composites were synthesized using the impregnation method. The morphological characteristics, structural features, and photochemical properties of the prepared photocatalysts were investigated via X-ray diffraction, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, and ultraviolet-visible (Vis) diffuse reflectance spectrum techniques. BN was used as a charge transfer bridge in the ternary composites, which afforded a heterojunction between the two semiconductors. The formation of the heterojunction substantially enhanced the charge separation and improved the photocatalyst performance. The degradation activity of the Bi2O3/BN/Co3O4 ternary composites against norfloxacin (NOR) under Vis light irradiation was investigated. The degradation rate of NOR using 5-wt% Bi2O3/BN/Co3O4 reached 98% in 180 min, indicating excellent photocatalytic performance. The ternary composites also exhibited high photostability with a degradation efficiency of 88.4% after five cycles. Hydroxyl radicals (•OH), superoxide radicals (•O2-), and holes (h+) played a synergistic role in the photocatalytic reaction, where h+ and •O2- were more important than •OH. Consequently, seven intermediates and major photocatalytic degradation pathways were identified. Toxicity experiments showed that the toxicity of the degradation solution to Chlorella pyrenoidosa decreased. Finally, the ecotoxicity of NOR and its intermediates were analyzed using the Toxicity Estimation Software Tool, with most intermediates exhibiting low toxicity.


Assuntos
Compostos de Boro , Chlorella , Cobalto , Norfloxacino , Óxidos , Norfloxacino/toxicidade , Catálise
20.
Environ Sci Pollut Res Int ; 31(11): 16473-16484, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38321280

RESUMO

g-C3N4/ZnxCd(1-x)S composites were synthesized by a simple hydrothermal method. The composites were characterized by X-ray diffraction, UV-vis diffuse reflectance spectroscopy, infrared spectroscopy, and electron micro-projective microscopy. According to the performance of ZnxCd(1-x)S for the photocatalytic degradation of norfloxacin under visible light in water, the best stoichiometric number of x was 0.5. The best photolytic norfloxacin degradation rate of g-C3N4/ZnxCd(1-x)S composites was 89.8%, which was obtained when the dosage ratio of g-C3N4 to ZnxCd(1-x)S was 1:1. The experiment was conducted to investigate the effect of pH on the catalyst to obtain the optimal NORF degradation environment pH in the range of 7 ± 0.3; by simulating the anions that may be contained in the actual environmental water, the results showed that the catalyst has a certain effect on the degradation of NORF when the water contains NO3-, Cl- and HCO3-. In addition, this study also obtained that the main active substances produced by the catalyst during degradation were electron-hole pairs by adding different trapping agents in the NORF removal experiments; and the catalyst was able to achieve a degradation rate of 86.1% after four cycles of the experiments, which proved that it had good stability.


Assuntos
Antibacterianos , Norfloxacino , Antibacterianos/química , Cádmio , Fotólise , Luz , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...